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Although the combined antiretroviral therapy (cART) has decreased the deaths

associated with the immune deficiency acquired syndrome (AIDS), non-AIDS conditions

have emerged as an important cause of morbidity and mortality in HIV-infected

patients under suppressive cART. Since these conditions are associated with a

persistent inflammatory and immune activation state, major efforts are currently made

to improve the immune reconstitution. CD8+ T-cells are critical in the natural and

cART-induced control of viral replication; however, CD8+ T-cells are highly affected by

the persistent immune activation and exhaustion state driven by the increased antigenic

and inflammatory burden during HIV infection, inducing phenotypic and functional

alterations, and hampering their antiviral response. Several CD8+ T-cell subsets, such

as interleukin-17-producing and follicular CXCR5+ CD8+ T-cells, could play a particular

role during HIV infection by promoting the gut barrier integrity, and exerting viral control

in lymphoid follicles, respectively. Here, we discuss the role of CD8+ T-cells and

some of their subpopulations during HIV infection in the context of cART-induced viral

suppression, focusing on current challenges and alternatives for reaching complete

reconstitution of CD8+ T-cells antiviral function. We also address the potential usefulness

of CD8+ T-cell features to identify patients who will reach immune reconstitution or have

a higher risk for developing non-AIDS conditions. Finally, we examine the therapeutic

potential of CD8+ T-cells for HIV cure strategies.
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EPIDEMIOLOGY OF HIV INFECTION AND IMPACT OF
ANTIRETROVIRAL THERAPY

The human immunodeficiency virus type-1 (HIV) infection remains an important public health
problem, particularly in developing countries. As a result of the long-term subclinical presentation
of this infection, a high rate of shortfall at diagnosis is evidenced worldwide, and almost half of
the HIV-infected patients are not aware of their HIV status (1). Therefore, most of the available
data on HIV epidemiology is based on estimates, particularly in resource-limited settings (2). This
issue dramatically affects public health policies; representing amajor barrier for HIV global control.
Thus, according to UNAIDS 2017 data, at the end of 2016, 36.7 million people lived with HIV, and
of these, 17.8 million were women, and 2.1 million were children. The problem is increasing, as the
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global annual number of new HIV infections is 1.8 million, and
deaths associated with the acquired immune deficiency syndrome
(AIDS) reach 1 million.

The most important advance in the clinical management
of HIV infection was the development of antiretroviral drugs
and their therapeutic combination to suppress systemic viral
load. Indeed, the combined antiretroviral therapy (cART), i.e.,
combination of three or more antiretroviral drugs, generally
including at least two drugs of different mechanisms of action
(1), has been effective in decreasing the deaths associated
with AIDS. According to UNAIDS 2017 estimates, global
AIDS-related deaths declined in 48% between 2005 and
2016, with near to eight million deaths prevented since
the introduction of the therapy in 1995. Moreover, the
decrease in the viral load by cART and consequent lower
transmission risk, has led to the reduction of 16% of new
HIV infections between 2010 and 2016. In addition, pre-
exposure and post-exposure prophylaxis are recommended in
some countries for prevention of HIV infection (3). Thus,
cART constitutes a critical strategy for the control of HIV-
associated morbidity and mortality, as well as a transmission
prevention approach.

The World Health Organization (WHO) and Centers for
Disease Control and Prevention (CDC) recommends the
initiation of cART as soon as possible after diagnosis, resulting
in improved viral control and prevention of AIDS conditions
(available at https://www.who.int/hiv/topics/treatment/en/ and
https://aidsinfo.nih.gov/guidelines). However, guidelines for
management HIV-infected patients in some Latin American
countries, such as Colombia, have clearly defined indications
for initiation of cART, based on CD4+ T-cell counts and viral
load (4). Importantly, from the total diagnosed patients in
Colombia, 89.9% received at least one dose of antiretroviral
drugs, although the number of patients receiving continuous
therapy and with viral suppression (plasma or serum viral load
<20 copies RNA/mL) only reached 66.6% of treated patients.
This reflects the poor health system that is not able to sustain
antiretroviral supply, in addition to problems with therapy
adherence; these problems might be common in other Latin
American countries. Overall, the strategies to increase the
rate of diagnosis and the rapid initiation and maintenance of
cART, will help to achieve the 90-90-90 target for HIV-infected
patients (2).

CURRENT CHALLENGES OF THE
ANTIRETROVIRAL THERAPY

In addition to important issues in prevention, screening, and
diagnosis of HIV-infection, the treatment of diagnosed patients
has faced several challenges and pitfalls. These issues can be
divided as following: (i) operative, related to coverage, adherence,
and adequate monitoring of therapy; (ii) virological, related
to generation of viral resistance to antiretroviral drugs, and
(iii) immunological, related to immune reconstitution failure.
Operative challenges include those associated with the lack of
the required financial resources for implementing integral HIV

programs; inadequate stocks of antiretroviral drugs; limited
health system infrastructures; low acceptance of cART initiation
and long-term adherence with absence of proven methods
to ensure treatment adherence and an adequate follow-up.
The complexity of cART regimens and the side effects of
antiretroviral drugs are also a major complaint in HIV-
infected patients. Moreover, the persistent stigma associated
with HIV infection limits the timely detection of cases and
early initiation of cART (5). The second type of cART
challenge is the antiretroviral drugs resistance, which is the
most frequent type of therapy failure, inducing a change in
the first-line cART scheme (6). Drug resistance results from
the high rate of viral mutations, enhanced by a poor cART
adherence, pharmacokinetics limitations, inadequate dosing or
drug interactions (7). In addition, a weak monitoring and
limited indicators for antiretroviral drugs resistance reduce
the rate of successful cART (8). Finally, partial immune
reconstitution by cART is a major concern in the setting of
viral suppression. It has recently attracted more attention, as it
has been associated with increased non-AIDS conditions and
related mortality, despite the reduction in AIDS-related deaths
(9). Indeed, non-AIDS conditions, such as cardiovascular disease
or stroke, are responsible for around 42% of deaths among
HIV-infected patients with viral suppression induced by cART.
Moreover, the mortality rate in these individuals is higher than
in the general population, even excluding the AIDS-related
conditions (10, 11).

Importantly, the success of cART in reducing AIDS-related
deaths and increasing the life expectancy of HIV-infected
patients, has resulted in a high number of patients over
50 years living with HIV (available at https://www.cdc.gov/
hiv/group/age/olderamericans/index.html). Thus, the presence
of concomitant diseases, such as metabolic or cardiovascular
pathologies, and their respective medications, influence the
choice of antiretroviral drugs for cART regimens, and increase
the risk of side effects due to drug interactions (12).

CD8+ T-CELLS, EFFECTOR FUNCTIONS,
AND SUBPOPULATIONS

Activation and Differentiation of CD8+

T-Cells
CD8+ T-cells are part of the adaptive immune system,
playing a critical role for protection against foreign
organisms and malignancies (13). The activation of naïve
CD8+ T-cells requires three signals, provided by antigen-
presenting cells (APC). Initially, there is the recognition
of the antigen by the T-cell receptor (TCR); in the case of
CD8+ T-cells, the peptides are 8–10 amino acids in length
and are presented by major histocompatibility complex
(MHC) class I molecules. Second, costimulatory signals
are required, such as the binding of CD80 or CD86 from
the APC to the CD28 molecule expressed by the CD8+

T-cell, and finally an alarm signal produced in response to
pathogens, such as IL-12 and type I interferon (IFN), among
others (14, 15).
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After activation, CD8+ T-cells undergo clonal expansion,
generating a large pool of effector cells. These cells exhibit
high effector functions, such as the expression of cytokines,
cytotoxic molecules and a high capacity for degranulation
(16–19). Additionally, at this point, effector CD8+ T-cells
acquire the ability to migrate to peripheral tissues (20). After
clonal expansion, effector cells suffer massive apoptosis, in a
period known as contraction phase. Finally, the remaining
antigen-specific CD8+ T-cells constitute the pool of memory
cells, which decrease their effector profile, remaining in a
quiescent state expecting a new antigenic challenge. This period,
which can last the whole life of the individual, is known as
the memory phase (21). Several CD8+ T-cells differentiation
models propose that memory cells can differentiate into
effector cells once they are exposed to activation signals,
acquiring a high capacity for cytokine production and cytotoxic
potential (22).

CD8+ T-Cells Effector Mechanisms
CD8+ T-cell effector mechanisms can be classified in lytic
(cytotoxicity) and non-lytic (cytokine production) (Figure 1).
These effector functions are primarily regulated by the balance
between the T-bet, Eomes, and Runx families of transcription
factors (23–26). Indeed, these transcription factors not only
bind to DNA sequences of effector molecules such as granzyme
B and IFN-γ, but also cooperate with chromatin remodeling
proteins to regulate chromatin accessibility of key genes
in activated CD8+ T-cells (27). The cytotoxic capacity of
CD8+ T-cells depends on the content of their lytic granules
and their degranulation capacity (28, 29). Lytic granules are
secretory lysosomes containing effector molecules, such as
granzymes and perforin (30). The core of the granule is
surrounded by a lipid bilayer containing lysosome-associated
membrane glycoproteins (LAMP), including LAMP-1 (CD107a),
LAMP-2 (CD107b), and LAMP-3 (CD63) (31). During the
degranulation process, the granule membrane is fused with
the plasma membrane of the activated CD8+ T-cell, and the
content of the granule is released into the immunological
synapse between the CD8+ T-cell and the target cell (29).
Of note, LAMP molecules are not found on the surface of
resting CD8+ T-cells. Therefore, the evaluation of the surface
expression of CD107a/b allows to identify the degranulation
of CD8+ T-cells (28, 29). In addition, lytic granules also
contain the membrane pore-forming protein granulysin (32),
the proteoglycan matrix protein serglycin (33), the perforin
inhibitor calreticulin (34), and the lysosomal enzymes cathepsins
(35). Moreover, apoptosis-inducing Fas ligand (CD95L) is
stored in specialized secretory lysosomes of CD8+ T-cells and
the degranulation process controls its expression at the cell
surface (36).

Perforin and granzymes are the most abundant proteins
within the lytic granules of CD8+ T-cells and cooperate for
inducing death of target cells (37). Apparently, granzymes work
in a perforin-dependent manner, since initial studies in mast
cell lines, the presence of perforin was required for granzyme
B-induced death of target cells (38). Thus, the pore formation
by perforin facilitates the entry of granzymes into target cells

(39). However, granzymes could be internalized by endocytosis,
after binding to the mannose-6-phosphate receptor in target cells
(40). Molecular effector mechanisms can vary among granzyme
subtypes, inducing apoptosis through caspase-dependent and
independent mechanisms (41). Once in the cytosol of target cells,
granzymes cleave the BH3-interacting domain death agonist
(BID) and pro-caspase 3 (42, 43). Truncated BID alters the
mitochondrial membrane, inducing the release of pro-apoptotic
factors such as cytochrome C, involved in the formation of
the apoptosome (44), and endonuclease G, which causes DNA
fragmentation (45). In addition, active caspase 3 also induces
endonuclease and protease activation, causing degradation of
cellular DNA and cytoskeletal proteins (46).

Cytokines secreted by CD8+ T-cells include IFN-γ, TNF-
α, and IL-2, important for promoting antiviral, inflammatory
responses, and T-cell survival and proliferation, respectively
(47). Additionally, CD8+ T-cells secrete the β-chemokines
macrophage inflammatory protein (MIP)-1α (CCL3), MIP-1β
(CCL4), and regulated upon activation, normal T-cell expressed
and secreted (RANTES; CCL5). These chemokines bind to
the receptors CCR1, CCR3, CCR4, and CCR5, some of them,
previously characterized as HIV co-receptors (48); therefore they
play an important role in this infection by blocking viral binding
and entry into target cells (49, 50).

CD8+ T-Cell Subpopulations
Several CD8+ T-cell subsets have been described, based on the
expression of the differentiation markers CD45RA, CD45RO,
CCR7, CD62L, CD27, and CD28, among others. The most
extended classification divides them into naïve, central memory,
effector memory, and terminal effector cells; each of them
has different effector capacities, particularly evaluated by the
expression of granzymes, perforin, IFN-γ, the degranulation
ability, and in vitro cytotoxicity [Table 1; (18, 51)]. The lowest
functional capacity is observed for naïve CD8+ T-cells, which
have low expression of effector molecules, reduced degranulation
capacity and low in vitro cytotoxicity. Central memory cells
have a low/intermediate cytotoxic potential, given their low
basal expression of granzymes and perforin, which confers
them a limited immediate in vitro cytotoxicity. However, these
cells can degranulate and express de novo effector molecules
after polyclonal or antigen-specific stimulation (22, 52). Finally,
effector memory and terminal effector cells are characterized by
a high cytotoxic capacity (Table 1).

Of note, the distribution of CD8+ T-cell subsets and their
effector machinery also vary according to the body tissues and
compartments, with effector CD8+ T-cells mainly located in
blood and inflamed tissues, and naïve and central memory
cells primarily found in secondary lymphoid organs (Table 1).
Particularly, their transcriptional program determines this cell
distribution and effector function. Thus, CD8+ T-cells in
lymphoid tissues, as well as in gastrointestinal mucosa, from
healthy individuals, have a lower expression of perforin and
granzyme B compared with blood cells, which is associated with
a low expression of T-bet in these tissues (53–55). Interestingly,
CD8+ T-cells in lymphoid tissues are poised to upregulate
cytotoxic molecules and rapidly exert effector functions, similar
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FIGURE 1 | Lytic and non-lytic effector mechanisms of CD8+ T-cells. CD8+ T-cells are activated after recognition of an MHC-I/peptide complex, which binds to the

TCR and CD8 molecules. The cytotoxic potential of CD8+ T-cells is determined by the expression of cytotoxic molecules granzyme B and perforin, and a coordinated

degranulation process, which can be evaluated by the cell membrane expression of CD107a (LAMP1). Receptor-mediated cell death via CD95L/CD95 interaction is

also a lytic mechanism of CD8+ T-cells. Activated CD8+ T-cells can also produce cytokines such as IFN-γ, TNF-α, and IL-17, and the β-chemokine CCL5, which

exert a variety of antiviral, inflammatory, and regulatory functions.

TABLE 1 | Effector capacity of CD8+ T-cells according to their differentiation stage.

Cell subset Phenotype Degranulation

(CD107a/b

expression)

Cytotoxic molecules

expression

(granzymes and/or

perforin)

In vitro

cytotoxicity

De novo synthesis

of granzymes

and/or perforin*

IFN-γ

production*

Main location

Naïve CD45RA+ CD45RO−

CCR7+ CD62L+ CD28+

CD27+ CD57−

– – – – – Secondary lymphoid

tissues

Central memory CD45RA− CD45RO+

CCR7+ CD62L+ CD28+

CD27+ CD57−

++ ++ ++
*

++ +++ Secondary lymphoid

tissues

Effector memory CD45RA− CD45RO+

CCR7− CD62L−

CD28+/−CD27+/−CD57−/+

+++ +++ +++ + +++ Blood and inflamed

tissues

Terminal effector CD45RA+ CD45RO−

CCR7− CD62L− CD28−

CD27− CD57+

+++ +++ +++ + +++ Blood and inflamed

tissues

*After 5 h stimulation.

to long-lived memory CD8+ T-cells (22). However, they also
upregulate trafficking markers such as CXCR3 to egress from
lymphoid tissues (53). Moreover, compared with blood cells,
memory CD8+ T-cells from tonsil, lymph nodes, and spleen
exhibit higher tissue residency markers such as CD69, CD103,
and CD49a, but lower expression of T-bet, eomes, perforin, and
granzyme B. Therefore, cells from blood and tissue compartment
form distinct phenotypic and functional clusters (56).

According to the cytokines they produce, several
subpopulations of CD8+ T-cells have been described. Similar
to CD4+ T-cells, IFN-γ-producing, and IL-5/IL-13-producing
CD8+ T-cells are designated as Tc1 and Tc2 cells, respectively
(57). Regulatory CD8+ T-cell subsets have also been described
(58). Moreover, IL-17-producing CD8+ T-cells (Tc17) can be

induced by polarizing cytokines such as Transforming Growth
Factor (TGF)-β1 and IL-6 (59). This population is characterized
by the expression of the C-type lectin receptor CD161 (60),
the transcription factor retinoic acid receptor-related orphan
nuclear receptor (ROR)-γt (61), and its main localization is the
intestinal tract (62–64). Importantly, the IL-17 cytokine family is
constituted by six proteins that share homology (IL-17A through
IL-17F) (65). The most widely studied is IL-17A (here referred
as IL-17), and pro-inflammatory and immunomodulatory effects
have been described (66). In the context of HIV infection, this
cytokine has attracted attention due to its beneficial effects in
the gut mucosa, such as the promotion of the conformation of
tight junctions in epithelial cells (67), secretion of antimicrobial
peptides (68), as well as recruitment of immune cells to sites
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of mucosal injury (69). In this sense, Tc17 cells could promote
gut homeostasis, exerting a protective mechanism during HIV
infection. Finally, similar to CD4+ T-cells, follicular CXCR5-
expressing CD8+ T-cells have been characterized (70), and their
role during HIV infection is examined below.

PROGRESSIVE DYSFUNCTION OF CD8+

T-CELLS DURING HIV INFECTION AND
POOR RECONSTITUTION DESPITE cART

CD8+ T-cells are important in the control of HIV replication
(71), as evidenced by: (i) emergence of HIV-specific CD8+ T-
cells coinciding with the decrease of viremia in acutely infected
patients (72); (ii) a potent HIV-specific CD8+ T cell response
contribute to the reduction of the pool of HIV-infected cells and
the HIV reservoir (73); (iii) increase in viral load in SIV-infected
macaques after CD8+ T-cell depletion (74, 75); (iii) associations
between the frequency and/or functional capacity of HIV-specific
CD8+ T-cells and limited viral replication and/or disease non-
progression in HIV-infected patients (76, 77); (iv) appearance of
viral escape mutations to evade the immune pressure of HIV-
specific CD8+ T-cells (78); (v) requirement of CD8+ T-cells for
maintaining therapy-induced viral suppression in SIV-infected
macaques (79). In fact, some CD8+ T-cells features have been
proposed as correlate of protection in HIV-infected patients (80).

While HIV-specific CD8+ T-cells control the virus during
acute HIV/SIV infection, their cytotoxic potential dramatically
decreases along with disease progression and are no longer
capable of exerting an appropriate antiviral response (81, 82).
Certainly, CD8+ T-cells suffer important alterations in their
frequency, differentiation, and activation profile, undergoing
immune exhaustion, and progressive dysfunction (24, 83–87).
Compared with seronegative individuals, the total pool of
circulating CD8+ T-cells is persistently increased in untreated
HIV-infected patients (88), with higher frequency of memory
subsets and reduction of naïve cells (89, 90). In addition,
patients exhibit higher expression of the activationmarkers HLA-
DR, CD38, and Ki-67 (91), and immune exhaustion markers
such as programmed death (PD)-1 and T-cell immunoglobulin
and mucin-domain containing-3 (TIM-3) (92). Remarkably, the
HLA-DR+ CD38+ Ki-67+ PD-1+ phenotype in CD8+ T-cells
characterizes the effector phase after acute viral infections or
vaccination, which is associated with disease control (16, 93–
96). Nonetheless, the expression of these molecules during
chronic HIV infection is accompanied by the impairment of
CD8+ T-cell lytic and non-lytic mechanisms (24, 83, 97), as
well as the proliferative ability and survival (98–100). Specific
subpopulations, such as Tc17 cells, are decreased in gut mucosa
and blood during HIV/SIV infections (101–103). Importantly,
these alterations are observed in HIV-specific CD8+ T-cells
(76, 104), as well as cells specific for other pathogens, such as
cytomegalovirus (CMV), Epstein-Barr virus, influenza virus, and
adenovirus (105, 106). Taking into account that HIV-specific cells
constitute <20% of the total CD8+ T-cell population (107, 108),
these data reflect the massive bystander activation that CD8+

T-cells undergo during HIV infection.

Considering that a large size of viral burden is a product of
infected cells in lymph nodes and gastrointestinal mucosa (109),
and there is a low distribution of antiretroviral drugs to these
compartments (110), an effective CD8+ T-cell response in these
tissues is required to control viral replication and the reservoir
size. Nonetheless, the cytolytic activity of lymph node CD8+

T-cells is reduced in chronically HIV-infected patients (both
untreated and on cART) compared with seronegative controls
(53). Furthermore, lymph node and rectal HIV-specific CD8+ T-
cells have lower expression of granzyme B and perforin, as well
as T-bet, compared with blood cells (53, 55). Thus, while there
is a regulated cytolytic function in CD8+ T-cells in lymphoid
tissues and gut mucosa, there is apparently a poorer cytotoxic
response in HIV-infected patients. Intriguingly, HIV controllers
maintain low viral load in the absence of therapy and despite
this low cytotoxic potential of CD8+ T-cells in lymphoid tissues
(53, 111). Thus, it is possible that non-lytic mechanisms and a
polyfunctional response, including IFN-γ, TNF-α, and MIP-1β
production, as well as degranulation, are critical in the control of
HIV infection in lymphoid and gastrointestinal tissues (111, 112).

Along with the suppression of viral load and the increase
in the CD4+ T-cell counts, cART induces improvement of
some of the CD8+ T-cell alterations found in HIV-infected
patients (113–115), whereas treatment discontinuation causes
the increase of CD8+ T-cell activation and dysfunction (116,
117). However, compared with seronegative individuals, cART
does not fully reconstitute the CD8+ T-cell counts (88, 118),
the proportions of memory subsets, the levels of activation and
exhaustion markers (91, 118–121), and their functional capacity
(24, 122). In addition, the loss of Tc17 cells andCD161-expressing
CD8+ T-cells is not restored in HIV-infected patients under
suppressive cART (101, 102, 120). Interestingly, in seronegative
individuals, HLA-DR+ CD38+ cells constitute the main IL-17-
producing subset among CD8+ T-cells (120), consistent with
an effector memory profile of HLA-DR-expressing CD8+ T-
cells (123). However, this subset is decreased in HIV-infected
patients on cART (120). Remarkably, early initiation of cART is
associated with improved reconstitution of CD8+ T-cell counts
and activation levels (124, 125), whereas a long treatment is
required for improvement of some CD8+ T-cell phenotypic and
functional disturbances (120, 123).

It is important to mention that the decrease in antigen load
with ART induces a decline in the frequency of circulating HIV-
specific CD8+ T-cells (108, 115, 126, 127), with subsequent
increases after treatment interruption or failure (108, 127, 128).
Changes in the frequencies of circulating CMV-specific CD8+ T-
cells are also observed in patients with treatment interruption
(108, 115, 127). HIV-specific CD8+ T-cells are maintained in
lymph nodes (128) and exert potent antiviral responses in ex
vivo assays (129), but are not able to suppress viral replication
in the absence of therapy. This issue represents a major
challenge in the setting of supervised treatment interruptions
strategies in the search of HIV cure strategies (130). Certainly,
memory virus-specific CD8+ T-cells respond to the changes in
antigen load and the inflammatory milieu during cART, actively
migrating within body compartments and possibly modulating
their effector response.
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CAUSES OF CD8+ T-CELL DYSFUNCTION
DURING HIV INFECTION

Three factors are major determinants of CD8+ T-cell dysfunction
during chronic infections (131): persistent antigen, negative
costimulation, and chronic inflammation. In addition, the loss of
CD4+ T-cell help enhances CD8+ T-cell dysfunction during HIV
infection (132), whereas cell-intrinsic defects may also contribute
to this pathogenic process (133). Remarkably, even in the context
of cART-induced viral suppression, the three major determinants
of CD8+ T-cells dysfunction are present, since there is a residual
HIV replication and microbial burden that maintain a persistent
antigen load (110, 134, 135), induce continuous expression of
inhibitory receptors (131), and the secretion of inflammatory
mediators (136–138).

Persistent Antigen and Chronic
Inflammation
Chronic immune activation is a hallmark of HIV infection (139),
and it is associated with phenotypic and functional changes
of immune cell populations (140), impairment of antiviral
mechanisms (141), increase in the number of target cells (142),
CD4+ T-cell regenerative failure (143, 144), and risk of organ
damage (145). HIV-associated immune activation is explained
by the persistent viral replication and reactivation of HIV
reservoirs, recurrence of co-infections, loss of the integrity of the
gut mucosa, and increased systemic levels of pro-inflammatory
cytokines [such as IL-6, IL-1β, and tumor necrosis factor (TNF)-
α], among other factors (139). Of note, the maintenance of low
immune activation levels characterizes non-pathogenic simian
immunodeficiency virus (SIV) infection in natural hosts despite
sustained viral replication (146). Moreover, the levels of immune
activation predict the magnitude of CD4+ T-cell depletion better
than viral loads in HIV-infected patients (91, 147), and are
associated with disease progression, the development of AIDS-
defining and non-AIDS conditions, and mortality (148–150).

Tissue reservoirs (i.e., tissues containing cells with integrated
HIV) promote a persistent antigenic burden during HIV
infection, even during cART. In a macaque model of SIV
infection, the primary reservoir sites of infection were lymphoid
tissues (∼98% of total RNA+ cells), including lymph nodes,
spleen, and gut-associated lymphoid tissues (GALT) (109).
Other tissues, such as brain, kidney, heart or lung, individually
contributed to <1% of RNA+ cells (109). Similarly HIV tissue
reservoirs are predominant in GALT (151), and lymph nodes
(152). In lymphoid follicles, CD4+ T-cells, particularly of the
CXCR5+ follicular subset, exhibit high levels of infection (153),
and free virions are captured by follicular dendritic cells (154).
Remarkably, although cART decreases the HIV reservoir size in
lymph nodes, HIV RNA and DNA can still be detected after
years of therapy (152, 155), whereas there is minimal cART-
induced change in HIV DNA in gut tissues (109). Thus, viral
reservoirs constitute an important source of persistent antigen,
even during cART.

The loss of the integrity of the gut mucosa is also responsible
for a high antigenic burden that consequently drives immune

dysfunction (156). Mechanistically, this process can be viewed as
follows (Figure 2A):

1. Alteration in the gut mucosa: during HIV/SIV infection, it
is induced by the decrease of mucosal IL-17/IL-22-producing
cells (157, 158), loss of gut junctional complexes (159, 160),
changes in the microbiota composition (161), and persistence
of HIV reservoirs in GALT (151).

2. Microbial translocation: Gut barrier disruption allows the
passage of microbial products from the intestinal lumen to the
lamina propria and systemic circulation (162).

3. Activation of immune cells by microbial-associated molecular
patterns (MAPS) via pathogen-recognition receptors (PRRs):
innate immune cells are activated by microbial components
via PRRs, such as Toll-like receptors (TLR) (163, 164).
Importantly, in chronic inflammatory settings (165, 166), as
well as during HIV infection (167), CD4+, and CD8+ T-cells
may upregulate TLR-2, 3, 4, 7, and 9 expression (167, 168),
and human T-cells can respond in vitro to several MAPS
(168, 169). In the case of CD4+ T-cells, this TLR-mediated
activation renders them more susceptible to HIV replication
(170) and apoptosis (169), whereas in the case of CD8+ T cells,
TLR engagement lowers the activation threshold (171), which
can be deleterious in a chronic setting. Thus, T-cell exposure
to TLR agonists may directly contribute to increased T-cell
activation during chronic HIV infection.

4. Cytokine secretion and immune cells activation and
dysfunction: IL-1β, IL-18, IL-6, TNF-α, and type-I IFN
induced by PRRs ligation promote the activation of innate
and adaptive immune cells (172, 173). Moreover, cytokines
such as IL-15 and IL-12 are an important signal for bystander
activation of CD8+ T-cells, particularly memory subsets (105).

Negative Costimulation
As previously mentioned, CD8+ T-cells from HIV-infected
patients exhibit increased expression of inhibitory receptors
such as PD-1, TIM-3, lymphocyte Activation Gene-3 (LAG-
3), CD160, and 2B4 (86, 120, 174). Overall, these receptors
interfere with TCR signaling by competing with costimulatory
ligands, modulating intracellular pathways, or inducing
inhibitory molecules in T-cells; these mechanisms decrease
the response of antigen-specific cells to cognate stimulation
(175). Expression of inhibitory receptors, particularly PD-1,
is also associated with a reduced functional capacity of total
CD8+ T-cells after polyclonal stimulation, such as lower
degranulation capacity, with consequent decreased release of
the cytotoxic molecules granzyme B and perforin (123), and a
lower proportion of IL-17-producing cells [(120); Figure 2A].
Moreover, activated/exhausted CD8+ T-cells present higher
susceptibility to apoptosis (104, 176, 177), as in the case of Tc17
cells, which are highly activated and exhausted during HIV
infection and are susceptible to activation-induced cell death
(102, 178). Finally, cell-intrinsic defects, such as an impaired
signaling machinery (133), and an altered transcriptional,
epigenetic, and metabolic profile may also account for the
observed dysfunction in activated/exhausted CD8+ T-cells
during HIV infection (24, 179, 180).
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FIGURE 2 | Model of CD8+ T-cell activation, exhaustion and dysfunction during treated HIV infection. (A) During chronic HIV, and despite cART-induced viral

suppression, gut barrier disruption (1) causes the passage of microbial products to systemic circulation (microbial translocation, 2), contributing to a high antigenic

burden together with residual HIV replication and ongoing co-infections (3). Microbial products and other antigens activate innate immune cells such as

monocytes/macrophages, which activate and release soluble CD14 (sCD14) and inflammatory cytokines such as IL-1β, IL-6, IL-15, and IL-12 (4). Particularly, IL-15

and IL-12 induce bystander activation of CD8+ T-cells (5), which in early stages of disease may exhibit potent cytotoxic capacity and cytokine production.

Nonetheless, chronic bystander stimulation induces exhaustion and dysfunction of CD8+ T-cells (6), which have an increased expression of HLA-DR, CD38, PD-1

and TIM3, and lower degranulation capacity and IL-17 secretion, among other alterations. The low secretion of IL-17 causes a low availability of this cytokine and its

beneficial effects on gut mucosa, worsening the gut barrier disruption (7). In this setting, sulfasalazine could be a therapeutic approach to target the inflammatory

environment and activated/dysfunctional CD8+ T-cells, through the inhibition of inflammatory cytokine secretion and induction of caspase-independent cell death (8).

(B) Model of the dynamic of viral load, CD4+ T-cells count, CD8+ T-cells count, CD4:CD8 ratio, the frequency of activated/exhausted CD8+ T-cells and their

functional capacity in HIV-infected patients before and after ART beginning. Of note, the viral load is efficiently suppressed and the CD4+ T-cells count are recovered

after treatment beginning, but the CD8+ T-cells features remain disturbed despite therapy.

POTENTIAL IMMUNOMODULATORY
STRATEGIES FOR IMPROVING CD8+

T-CELLS IMMUNE RECONSTITUTION
DURING ANTIRETROVIRAL THERAPY

cART Intensification
Some studies indicate that the intensification of the cART
with HIV integrase inhibitors, such as raltegrevir promotes
the normalization of the level of activation of CD8+ T-
cells (181, 182). Indeed, according with their mechanism of
action, integrase inhibitors decrease the levels of proviral
DNA (182–185), impacting in the reservoir size and the
consequent antigenic burden and immune activation. The
effect of raltegravir intensification of cART is also evidenced

by the decrease in the levels of the coagulation marker D-
dimer (184).

Anti-inflammatory Agents
Since chronic immune activation and systemic inflammation
are important determinants of HIV-associated morbidity and
mortality, some anti-inflammatory drugs have been explored
in the setting of HIV infection, including acetylsalicylic
acid, statins, and hydroxychloroquine [reviewed in (186)].
Among them, the treatment with the statins atorvastatin
or rosuvastatin in the presence of cART has shown a
reduction in the levels of HLA-DR/CD38 and/or PD-1-
expressing CD8+ T-cells compared with placebo controls (187–
189). We also explored the effect of sulfasalazine (SSZ) on the
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reconstitution of CD8+ T-cells functional capacity, focused on
IL-17 production (120). Sulfasalazine molecule combines the
antibiotic sulphapyridine with the anti-inflammatory drug 5-
aminosalicylic acid, and has been used in the treatment of
chronic inflammatory diseases (190). Previous reports indicated
that SSZ not only inhibits macrophage activation and secretion
of TNF-α (191, 192), but also induces apoptosis of activated—
and possibly dysfunctional—T-cells (193). Certainly, in vitro
analyses with cells derived from HIV-infected patients on
cART, showed that SSZ induces caspase-independent cell
death of CD8+ T-cells co-expressing HLA-DR and CD38
(120), possibly through the mitochondrio-nuclear translocation
of the apoptosis- inducing factor (AIF), that induces DNA
fragmentation (193). Moreover, SSZ decreased the levels of
LPS-induced IL-1β. These mechanisms were associated with
an increase in the proportion of Tc17 cells in HIV-infected
patients [(120); Figure 2A]. Interestingly, clinical observations
from Colombian health care programs for HIV indicate that
SSZ improves the symptoms of HIV-infected patients suffering
wasting syndrome. This effect could be related with the abnormal
T-cell activation in this group of individuals (194), that is targeted
by SSZ. Thus, the use of SSZ and/or other anti-inflammatory
drugs could be considered for managing patients with poor
response to cART or with advance/progressive disease; large
clinical studies that address its usefulness are needed.

Cytokines
Due to the high relevance of Tc17 cells in the context of HIV
infection, previous studies have evaluated different strategies
to reconstitute this population, as well as mucosa-associated
invariant T (MAIT) cells, which are an important IL-17-
producing CD161hi CD8+ subset. The administration of IL-
7, a member of the γ-common chain family of cytokines, to
HIV-infected patients on cART increases the frequency and
number of circulating MAIT cells (195). In vitro, IL-7 also
promotes the cytotoxic capacity and cytokine production of
MAIT cells (196). This approach could be relevant in the clinical
setting to limit the deterioration of the gut barrier, most likely
preventing microbial co-infections. Another member of the γ-
common chain, IL-21, promotes the survival, expansion, and
cytotoxic responses of antigen-specific CD8+ T-cells (197–199).
Accordingly, the administration of IL-21 to SIV-infected rhesus
macaques increased the expression of cytotoxic molecules and
polyfunctional CD8+ T-cells, compared with untreated controls
(200). A functionally-related cytokine, IL-15, also increased
the levels of granzyme B+ and perforin+ CD8+ T-cells after
administration (in the form of complex between IL-15 and
IL-15 receptor α) in uninfected and SHIV-infected rhesus
macaques, both in cells from peripheral blood, lymph nodes,
and mucosa (201). Interestingly, IL-15 treatment also promoted
the migration of cytotoxic CD8+ T-cells to lymphoid follicles
(201), whereas administration of an IL-15 superagonist to SIV-
infected macaques induced this effect through the induction
of the expression of the follicle-homing chemokine receptor
CXCR5 in CD8+ T-cells (202). Thus, γ-common chain cytokines
are potentially useful as immunotherapies for promoting CD8+

T-cells function HIV-infected patients, and clinical studies are
required to evaluate their effectiveness.

Checkpoint Therapy
Checkpoint therapy (i.e., blockade of the aforementioned
inhibitory receptors or their ligands) may constitute an
important strategy to improve CD8+ T-cell function in HIV-
infected patients on cART. Certainly, in vitro blockade of PD-1
or its ligands PD-L1/L2 promotes HIV or SIV-specific CD8+

T-cells function and proliferative capacity (83, 203). Similarly,
evidence in macaque models of SIV infection indicates that anti-
PD-1 antibody therapy increases the frequencies of SIV-specific
CD8+ T-cells in blood and gut, with improved polyfunctional
capacity and proliferative potential; this effect is associated
with significant reductions in viral load and increased survival
of infected macaques (204). Interestingly, PD-1 blockade also
promotes the response of CD8+ T-cells against gut-resident
pathogens, as well as contribute to reduce gut epithelial damage,
microbial translocation, and immune activation (205). Moreover,
the administration of anti-PD-1 antibody to rhesus macaques
prior initiation of cART enhanced the antiviral function of CD8+

T-cells, whereas promoted the expansion of CXCR5+ perforin+

granzyme B+ CD8+ T-cells after cART interruption, resulting
in a better control of viremia (206). Interestingly, the CXCR5+

subset is the main CD8+ T-cell population responding to PD-
1 blockade (207), which would be important in the context of
HIV infection due to the role of follicles as tissue reservoirs
(discussed below). Another effect of PD-1 axis blockade would
be the reversal of HIV latency (208), that could contribute to
recognition and elimination of infected cells by functionally
improved HIV-specific CD8+ T-cells. In line with this evidence,
a phase I clinical trial of an anti-PD-L1 antibody in 8 HIV-
infected patients on cART showed that the frequency of Gag-
specific CD8+ T-cells expressing IFN-γ or CD107a increased
from baseline to day 28 post-treatment, although there was no
statistical significance, most likely due to high inter-individual
variability. There were no changes in the CD4+ T-cell counts
or CD4:CD8 ratio (209). Importantly, an overall safety has been
shown for the anti-PD-L1 or anti-PD1 antibody therapy, even
in patients with concomitant malignancies (209, 210). Together,
these studies indicate that PD-1 axis blockade could improve
the antiviral function of CD8+ T-cells during HIV infection,
along with other beneficial effects on the levels of microbial
translocation, immune activation and viral reservoirs.

CD8+ T-CELLS AS CORRELATES OF
IMMUNE RECONSTITUTION DURING
ANTIRETROVIRAL THERAPY

A large body of evidence indicate that monitoring CD4+ T-
cell counts, and viral load is informative of the effectiveness
of cART-induced viral suppression in HIV-infected patients.
Typically, CD4+ T-cells increase rapidly in the first weeks of
treatment, followed by a more gradual increase, depending on
the level of nadir CD4+ T-cells or the naïve subpopulation
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at the time of treatment initiation (211–215). Moreover, HIV-
infected patients who maintain viral suppression and had CD4+

T-cells ≥300 cells/µL are unlikely to experience counts <200
cells/µL (threshold for opportunistic infection risk), suggesting
that routine CD4+ T-cells monitoring may be unnecessary in
some scenarios (216). Certainly, undetectable viral load or CD4+

T-cell counts do not reflect the immunological alterations that
are present in treated HIV-infected patients. In contrast, the
persistently high CD8+ T-cell counts and low CD4:CD8 ratio
are indicative of partial immune reconstitution in treated HIV-
infected patients, and, due to their accessibility in low-income
settings and predictive power of adverse clinical outcomes (88,
217, 218), could be useful tools for immune monitoring of these
individuals. Moreover, in HIV-infected patients under long-term
suppressive cART (more than 25 months) there is a recovery in
the proportion of CD107a+ and IL-17+ CD8+ T-cells, reaching
similar levels to those seen in seronegative individuals (120, 123).
These findings suggest a potential usefulness of these CD8+

T-cell functional markers to predict immune reconstitution in
HIV-infected patients on cART, in addition to others currently
used such as the CD8+ T-cell counts and the CD4:CD8 ratio
(88, 217, 218).

In summary, cART-induced immune reconstitution
is a long-term and incomplete process. After treatment
initiation, viral load is rapidly controlled and CD4+ T-cell
counts are progressively recovered. However, CD8+ T-cell
counts remain increased despite cART, along with a low
CD4:CD8 ratio (Figure 2B). Moreover, the frequency of
activated/exhausted CD8+ T-cells do not completely return
to basal levels, and some grade of dysfunction remains in
several CD8+ T-cell subsets (Figure 2B). The improvement of
cART effectiveness may require the combination of strategies
such as an early beginning of therapy, rigorous clinical
monitoring, the use of reliable biomarkers and possibly the use
of immunomodulatory therapies.

CXCR5+ CD8+ T-CELLS AND THEIR ROLE
DURING HIV INFECTION

Another subpopulation of CD8+ T-cells that is relevant in
the setting of HIV infection is that expressing CXCR5, since
they could be a potential therapeutic cell-based strategy to
eradicate HIV in follicles (219), an important body viral reservoir
(153, 220). CXCR5-expressing CD8+ T-cells follow a particular
dynamic during HIV/SIV infection. A common observation
across studies is the increase in the proportion of CXCR5+ CD8+

T-cells in lymphoid follicles in HIV-infected patients, compared
with seronegative controls (70, 221–223). A similar accumulation
of follicular CXCR5+ CD8+ T-cells has been observed in SIV-
infected macaques (224, 225). This accumulation is associated
with the inflammatory/immune activation environment within
follicles and increased levels of the CXCR5-ligand CXCL13 in
HIV-infected patients, but not with the levels of viral replication
or antigens, both during HIV (222) and SIV infection (225).
Moreover, CXCR5+ CD8+ T-cells could also migrate within
lymph nodes in response to CXCL10, which is ligand of

CXCR3, as has been observed in SIV-infected macaques (224).
Interestingly, CXCR5+ CD4+ T-cells also accumulate during
chronic HIV infection (153, 223, 226), whereas this process is also
driven by the local inflammation in SIV-infected macaques (227).
Accordingly, increased immune activation and inflammatory
cytokines secretion is present in lymph nodes from chronically
HIV-infected patients (228). Interestingly, lymphotoxin α and β,
and TNF are required for the expression of CXCL13 by murine
follicular stromal cells (229), CXCL13 is expressed in chronic
inflammation (230), and is a marker of chronic inflammation
in HIV-infected patients, even during cART (231). Thus, the
antigen burden in lymphoid tissues, both by infected CD4+ T-
cells or virion-bearing follicular dendritic cells, may induce an
inflammatory environment that in turn promote the production
of CXCL13, contributing to the accumulation of CXCR5+

CD8+ T-cells.
Importantly, ART does not decrease the frequency of

CXCR5+ CD8+ T-cells in human lymph nodes (222), which
is in agreement with the low drug distribution to these
tissues and consequent unchanged inflammatory environment,
in comparison with blood (110). In addition, the compromise
in follicles architecture during HIV infection may also be
responsible for the increased passage of CD8+ T-cells and other
cell types to these compartments (232).

On the other hand, circulating CXCR5-expressing CD8+

T-cells, which exhibit a transitional memory phenotype, are
decreased in untreated HIV-infected patients compared with
seronegative controls, but are maintained in patients under
suppressive cART (233). Interestingly, the decrease in CXCR5+

CCR7− CD8+ T-cells is associated with the increase in
CXCR5− CCR7− cells, which are most likely an effector
memory population. Moreover, the frequency of CXCR5hi

CCR7−/lo CD8+ T-cells is inversely correlated with the level
of systemic HIV replication in untreated HIV-infected patients,
particularly in elite controllers (233). Strikingly, while similar
correlations between the number of circulating human CXCR5+

CD8+ T-cells and systemic viral load have been reported
(221), comparable associations were obtained between the
frequencies of lymph node-confined memory CXCR5+ CD8+

T-cells and systemic viral load in HIV controllers patients
(53). Thus, immune activation and local inflammation, but
not viral replication, are apparently major drivers of CXCR5+

CD8+ T-cells (and CXCR5+ CD4+ T-cells) accumulation in
lymphoid follicles during chronic HIV/SIV infection (Figure 3).
Once in the lymphoid follicles, antigen-specific CXCR5+

CD8+ T-cells could partially eliminate infected cells, being
reflected in lower local and systemic viral load, as has been
observed in SIV-infected macaques (234). In fact, a role of
this subpopulation in the control of HIV (70, 221) and
SIV (225, 235) replication has been proposed, their antiviral
function in follicles could be an important mechanism of
disease protection, and its frequency could be as useful
correlate of limited viral replication. If the systemic viral
load, immune activation and/or tissue inflammation decrease,
these cells could egress from the follicles, enter systemic
circulation and search for other lymphoid follicles or tissues
(Figure 3). However, it is yet unclear which other factors may
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FIGURE 3 | Model of the dynamics of CXCR5+ CD8+ T-cells during HIV infection. CD8+ T-cells are polarized to a follicular-like CXCR5+ profile after priming by an

antigen-presenting cell that secrete TGF-β1 and IL-23 (1). These cytokines induce the up-regulation of CXCR5, Bcl-6, PD-1, ICOS, CD40L and IL-21, with

down-regulation of CCR7 and BLIMP-1 (2). In circulation or peripheral tissues, follicular-like CXCR5+ CD8+ T-cells also exhibit a cytotoxic potential and production of

IFN-γ. During chronic HIV infection and in the setting of high viral load and consequent increased immune activation and tissue inflammation, there is an accumulation

of CXCR5+ CD8+ T-cells in lymphoid follicles, in response to CXCL13 (4). The high levels of TGF-β1 produced by antigen-presenting cells or regulatory T cells (Treg),

may also induce the differentiation and accumulation of CXCR5+ CD8+ T-cells. Once in the follicles, CXCR5+ CD8+ T-cells exert an antiviral effect, which can be

reflected in lower viral replication and the subsequent decrease in the immune activation/tissue inflammation and the egress of this subset from follicles. In circulation,

CXCR5+ CD8+ T-cells possibly search for other lymphoid follicles or peripheral tissues (5).

influence the induction of CXCR5 and follicle migration of
CD8+ T-cells.

In order to explore the differentiation conditions of human
CXCR5+ CD8+ T-cells, we evaluated the effect of TGF-β1, IL-23,
and IL-12, which promote the differentiation of human follicular
CD4+ T-cells (236) and induce the expression of CXCR5 in non-
human primate CD8+ T-cells (234). In vitro, TGF-β1 plus IL-23
(in the presence of TCR stimulation) induced the expression of
CXCR5 in purified CD8+ T-cells from healthy individuals, as
well as a follicular-like phenotypic and transcriptional profile,
such as the up-regulation of PD-1, inducible T-cell costimulatory
(ICOS), CD40L and BCL6, and the down-regulation of CCR7 and
PRDM1 (Perdomo-Celis F, In press). These data suggest that, in
vivo, TGF-β1 and IL-23 may be polarizing factors for follicular-
like CXCR5+ CD8+ T-cells, which could then migrate to
lymphoid follicles for exerting immune surveillance (Figure 2).
Considering the increased levels of regulatory T cells (Treg)-
derived TGF-β1 in lymphoid tissues during HIV infection (237),
there could be an appropriate environment for the differentiation
and accumulation of follicular-like CXCR5+ CD8+ T-cells
(Figure 3). Importantly, the induction of the expression of
CXCR5 in CD8+ T-cells through cytokine stimulation or
genetic engineering may be a useful strategy for improving the
migration of these cells to lymphoid follicles and boost follicular
antiviral responses that help to eradicate viral reservoirs in these
structures (202, 238, 239).

CD8+ T-CELL-BASED STRATEGIES TO
TREAT OR CURE HIV INFECTION

Current strategies for CD8+ T-cell-based strategies to treat or
cure HIV infection are based on stimulating pre-existing and/or
inducing de novo HIV-specific immune responses through
vaccine therapies or redirecting HIV-specific CD8+ T-cells and
improving their function and persistence after adoptive transfer.
The latter adoptive transfer strategies can be divided in (i)
Expansion of HIV-specific CD8+ T-cells; (ii) Artificial CD8+

TCR; (iii) Chimeric antigen receptors (CAR); (iv) Selection
of CD8+ T-cells with long-term persistence; (v) Induction
of HIV-specific CD8+ T-cells from virus-naïve donor cells.
Of note, these strategies may also be accompanied by the
aforementioned immunomodulatory approaches, in order to
reach a global reconstitution of the CD8+ T-cell response, as
well as with latency-reversing agents, to induce the reactivation
of viral reservoir (240), particularly in the case of patients
receiving cART.

CD8+ T-Cell-Based Vaccines
Several HIV vaccine candidates have been focused on the
induction of CD8+ T-cell responses in order to control
viremia, i.e., as a therapeutic approach. They range from whole
attenuated virus, vector viruses containing HIV proteins, DNA
plasmids, and HIV peptides [reviewed in (241)]. Importantly,
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immunization should be performed with multiple selected
peptides based on conserved regions of HIV proteins, which
induce subdominant but effective CD8+ T-cell responses, and
are restricted by the most common HLA alleles in a specific
population (242, 243). Nonetheless, in general, a low and
transient reduction of viral load has been observed with most
therapeutic vaccines (241), indicating that a combination of
this and other approaches is required for a relevant impact on
disease progression.

HIV-Specific CD8+ T-Cells Adoptive
Transfer
First reports including small cohorts of HIV-infected patients
(some of them receiving cART) demonstrated that the infusion
of autologous CD8+ T-cells enriched for HIV-specific cells
targeting several viral proteins (expanded ex vivo through
polyclonal stimulation), transiently decreased plasma viremia or
productively infected cells, and increased CD4+ T-cell counts
(244, 245). Nonetheless, in other studies, a rapid apoptosis of
adoptively transferred HIV-specific CD8+ T-cells was associated
with failure in the reduction of viral load (246). Moreover,
transfer of HIV-specific CD8+ T-cells induced selection of
escape mutant HIV variants, which was associated with rise in
viral load and decrease of CD4+ T-cells (247). More recently,
other approaches based on infusion of CD8+ T-cells specific
for multiple HIV antigens (248) demonstrated efficacy in the
control of autologous reservoir virus (249). Similarly, CD8+ T-
cells transduced with vectors expressing a TCR targeting the
relevant HIV epitope SL9 in Gag protein, showed lysis capacity
and reduced infectious cells in vivo in SCID mice (250), as
well as functional capacity in cells derived from cART-receiving
patients (251). However, engineered TCR may have recognition
of self-epitopes, resulting in severe reactions such as cardiac
toxicity (252), which limits the use of this approach. The use of
CAR CD8+ T-cells may overcome the problems of viral escape,
HIV-induced HLA downregulation, and immune exhaustion
(253). First-generation CAR T-cells containing the extracellular
domain of human CD4 linked to the CD3ζ chain (CD4ζ) showed
prolonged survival and trafficking to gut mucosa, although did
not change viral load in HIV-infected patients (254). More
recently, the CD4ζ CAR was re-engineered to express the 4-1BB
costimulatory domain, inducing a more potent HIV suppressing
capacity in vitro and in vivo in a humanized mouse model (255).
CAR T-cells have also been designed with expression of single-
chain variable fragments of broadly neutralizing antibodies
(256), or carbohydrate-recognition domain of C-type lectin, both
targeting gp120 (257). Another approach to improve the survival
of adoptively transferred HIV-specific CD8+ T-cells is to select
those with a long-term memory profile. Accordingly, ex vivo
expanded HIV-specific CD28+ CD8+ T-cells survived for at least
84 days after infusion in cART-receiving patients and maintained
central memory characteristics (258). Finally, functional HIV-
specific CD8+ T-cells can be generated from HIV-negative
donors through priming with peptide-pulsed dendritic cells,
followed by polyclonal expansion. This approach could be useful
in the setting of hematopoietic stem cell transplantation in HIV-
infected patients to recover or improve the virus-specific CD8+

T-cell response (259).

In summary, these studies demonstrate the potential of CD8+

T-cell-based therapeutic strategies for HIV treatment or cure
strategies. More importantly, combination of different strategies,
such as vaccine induction of virus-specific CD8+ T-cells and
subsequent adoptive transfer, could limit viral replication and/or
rebound after cART interruption, as recently evidenced in a
macaque model (260).

CONCLUSIONS AND FUTURE
PERSPECTIVES

Despite intense research on HIV, there is no preventing
vaccine and cure available for this infection. In fact, a
high incidence is still reported worldwide, underlying the
importance of providing an optimal cART and health care
management to HIV-infected patients, not only for improving
their quality of life and preventing several co-morbidities,
but also for breaking the chain of transmission. Thus, the
characterization of HIV-infected patients under suppressive
cART is required to understand the benefits, pitfalls, and
challenges of cART, to identify novel immunomodulatory
targets, and to elucidate potential strategies for reaching a
functional or sterilizing cure for this infection. Despite complete
suppression of viral load and reconstitution of CD4+ T-cells,
HIV-infected patients exhibit increased systemic inflammation
levels and a compromised CD8+ T-cells response, characterized
by high activation/exhaustion and impaired lytic and non-
lytic mechanisms. Some of the phenotypic and/or functional
CD8+ T-cell features could be used in the clinical setting
to identify those patients reaching immune reconstitution
during continuous suppressive cART. Some of the CD8+ T-
cell alterations, such as low IL-17 production, could be targeted
by immunomodulatory drugs. Finally, follicular CXCR5+ CD8+

T-cells could be a therapeutic weapon for targeting viral
reservoirs in lymphoid follicles, along with other CD8+ T-cell-
based strategies.
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